Djangify eCommerce Builder

Djangifty
eCommerce
builder

www.djangify.com

Self-Hosted and Managed Hosting eCommerce Platform
for Digital Downloads

Comprehensive Documentation & Technical Reference

Version 1.0 | Django 5.2 LTS | Docker-First Distribution

https://www.djangify.com

Table of Contents

1. Introduction & Overview

2 Target Audience

3. Key Features

4. Architecture & Tech Stack
5. Project Structure

6. Installation & Deployment
7. Configuration

8. Admin Interface Guide

9. Shop Module

10. Blog Module

11. Pages Module (Page Builder

12. InfoPages Module

13. SEO Features

14. Authentication System

15. Theming & Customization
16. Docker Deployment

17. Maintenance & Updates

18. Security Considerations

19. Troubleshooting

20. Roadmap & Future Development (Credits and Acknowledgements)

1. Introduction & Overview

The Djangify eCommerce Builder (aka eBuilder) is an eCommerce platform
specifically designed for selling digital downloads.

Built with Django and distributed via Docker, it provides creators and
businesses with complete ownership of their online store, data, and revenue
streams.

It is available as a self-hosted version that you host yourself or with hosting

(and maintenance) managed by Djangify.

Unlike Saas platforms such as Shopify or Gumroad, eBuilder eliminates
recurring platform fees, transaction percentages, and vendor lock-in. Once
installed, the self-hosted version is yours to host anywhere, change freely, and
scale according to your needs.

Philosophy
The eCommerce Builder follows these core principles:

« Ownership First: Your store, your data, your customers, your income

« Docker-First Distribution: Consistent deployments across any
environment

« Admin-First Design: Manage everything through Django’s powerful
admin interface

« SQlite by Default: Simple, reliable, and performant without database
server complexity

« No Feature Bloat: Essential ecommerce functionality without
unnecessary complexity

What the eCommerce Builder Is NOT

« Not for shared hosting; requires Docker/VPS environment

« Not a page builder it is an eCommerce system with CMS capabilities

https://djangify.com/shop/product/self-hosted-digital-ecommerce-platform/
https://djangify.com/shop/product/digital-ecommerce-platform-managed-hosting/
https://djangify.com/shop/product/digital-ecommerce-platform-managed-hosting/

Not for physical products it is for digital downloads only (v1)

Not a Saas - you host and own everything (self-hosted)

Not a SaaS - we maintain everything and you can move your whole site
by taking your database with your data - (managed hosting)

Not a marketplace. It is a single-vendor store only

2. Target Audience

The Djangify eCommerce Builder is designed for creators and businesses who

want independence from platform fees and restrictions:

Primary Users

Digital Product Creators: Selling PDFs, guides, templates, or digital tools
Course Creators: Offering downloadable educational content

Digital Artists: Selling artwork, design assets, or creative resources
Software Developers: Distributing scripts, code templates, or tools
Musicians & Audio Producers: Selling beats, samples, or audio files
Photographers: Distributing stock photos or preset packs

Technical Requirements

Basic command line familiarity
Access to a VPS (DigitalOcean, Hetzner, Vultr, etc.)
Domain name

Stripe account for payment processing

3. Key Features

3.1 Complete Shop System

The shop module provides everything needed for selling digital products:

Product Management: Create products with titles, descriptions, images,
and pricing

Multiple Downloads Per Product: Attach multiple downloadable files to a
single product.

Download Limits: Configure per-purchase download limits for security
Categories: Organize products into categories with their own pages
Secure Downloads: Files served through authenticated endpoints, not
direct URLs

Product Reviews: Customers can leave ratings and reviews

Wishlist: Users can save products for later

Order History: Complete purchase history accessible from customer
dashboard

Multi-Currency Support: Configure currency via Site Settings

Video Embeds: YouTube video support for product demonstrations

3.2 Stripe Integration

Payment processing is handled entirely through Stripe:

Stripe Checkout: Modern, secure payment flow

Paymentintent API: Proper payment handling with webhook verification
Automatic Receipts: Stripe sends receipts to customers

Webhook Handling: Secure webhook endpoint for payment
confirmations

Test Mode Support: Full testing capability with Stripe test keys

3.3 Content Management

Beyond the shop, eBuilder includes a complete content management system:

Blog System

Full blogging with categories

Featured posts highlighted on the blog index

YouTube video embeds with automatic thumbnail extraction
External image URL support

Meta titles and descriptions for SEO

Social sharing buttons

Custom Pages (Page Builder)

Hero Sections: Full-width banners with title, subtitle, body, image, and
CTA button

Page Sections: Rich text content blocks with images

Three-Column Blocks: Feature cards with icons/images and
descriptions

Gallery Blocks: Image galleries with automatic thumbnail generation
FAQ Blocks: Expandable question/answer sections

Template Selection: Homepage, About, Custom Page, or Gallery layouts

InfoPages

Documentation pages with category organization
Policy pages (Privacy, Terms, Refunds, etc.)

Automatic table of contents generation from headings
Separate URL structures (/docs/ and /policies/)

3.4 SEO & Discovery

Comprehensive SEO features are built into every page:

« Schema.org Structured Data: Product, Article, ltemlList, Organization, and
WebPage schemas

« Open Graph Tags: Facebook and social media optimization

- Twitter Card Integration: Rich previews on Twitter/X

« Al Search Metadata: Page-type metadata for Al crawlers

« Automatic Sitemap: XML sitemap generation

+ Robots.txt: Configurable with Al bot support

« Canonical URLs: Prevent duplicate content issues

« Meta Titles & Descriptions: Per-page SEO customization

3.5 Design & User Interface

« Fully Responsive: Mobile-first design that works on all devices

« Tailwind CSS 4: Modern utility-first styling with CSS custom properties

« Adminita Theme: Beautiful, dark-mode compatible admin interface

« ARIA Compliant: Accessible to screen readers and assistive
technologies

« HTMX Integration: Dynamic interactions without page reloads

« Alpine s: Lightweight JavaScript for Ul interactions

4. Architecture & Tech Stack

4.1 Core Technologies

Component
Framework
Frontend CSS
Frontend JS
Database
Alternative DB
Payments
Authentication
Rich Text Editor
Admin Theme
Container
Reverse Proxy

Static Files

4.2 Application Architecture

Technology

Django 5.2 LTS
Tailwind CSS 4
Alpine.js, HTMX

SQLite with WAL mode (default)
PostgreSQL (optional)
Stripe

django-allauth
TinyMCE

Adminita

Docker + Gunicorn
Nginx/Caddy

WhiteNoise

The eCommerce Builder follows Django’s app-based architecture:

« accounts: User authentication, registration, customer dashboard

« shop: Products, categories, cart, checkout, orders, reviews, wishlist

+ blog: Posts, categories, featured content

« pages: Site settings, custom pages, page builder blocks

+ infopages: Documentation and policy pages

- hosting: Managed hosting signup flow (for service providers)

4.3 Database Strategy

SQLite with WAL (Write-Ahead Logging) mode is the default database:

+ No separate database server required

+ Excellent read performance for typical ecommerce workloads

« WAL mode enables concurrent reads during writes

« Simple backup: just copy the database file

« PostgreSQL can be used if wanted as an alternative for
high-concurrency scenarios

5. Project Structure

The project follows Django conventions with Docker-first organization:

ebuilder/
— docker-compose.yml # Container orchestration
— Dockerfile # Application container definition
— requirements.txt # Python dependencies
F— manage.py # Django management script
— .env.example # Environment variable template
I
— ebuilder/ # Project configuration
| |— settings.py # Main Django settings
| F—urlspy # Root URL configuration
| |— sitemaps.py # Sitemap configuration
| L— wsgipy # WSGI entry point
|
— accounts/ # User authentication app
— models.py # Custom user model
— views.py # Dashboard, profile views

| F— adapters.py # Allauth adapter customization
| L— templates/ # Auth templates

— shop/ # eCommerce app

| F— models.py # Product, Order, Review models

| — views/ # Shop views (products, cart, checkout)

| F—cartpy # Session-based cart

| F— emails.py # Order confirmation emails

| F— webhooks.py # Stripe webhook handling

| L— templates/ # Shop templates

|

— blog/ # Blog app

| F— models.py # Post, Category models

| L— templates/ # Blog templates

|

— pages/ # Page builder app

| F— models.py # Page, Hero, content block models

| |— context_processors.py # Global template context

| L— templates/ # Page templates and sections

|

— infopages/ # Documentation app

| F— models.py # InfoPage, Category models

| L— templates/ # Doc/policy templates

|

— templates/ # Global templates

| F—base.html # Base template

| F—includes/ # Reusable components

| | L—seof # SEO schema templates

| L— account/ # Allauth template overrides

|

— static/ # Static assets

| F—css/ # Stylesheets

| F—ijs/ # Javascript files

| L—images/ # Static images

|

L— data/ # Persistent data (mounted volume)
—db/ # SQlite database
— media/ # User uploads

L—logs/ # Application logs

6. Installation & Deployment

6.1 Prerequisites

Before starting, ensure you have:

Requirement [Minimum	Recommended	
-== -	-	-==mmmm
VPS/Server	2 CPU,1GBRAM	3 CPU, 2GB RAM
OS	Ubuntu 22.04+	Ubuntu 24.04 LTS
Docker	v24+	Latest
Docker Compose	v2.20+	Latest
Domain	Required	With SSL
Stripe Account	Required	Live mode for production

Suggested VPS providers: Hetzner, DigitalOcean, Linode, Vultr

6.2 Quick Start Installation
The standard installation only takes a few minutes:

1. Upload the eCommerce Builder folder to your server:
Using scp from your local machine
scp -r ebuilder-selfhosted/ user@yourserver:/home/user/ebuilder

Or upload via SFTP using FileZilla, WinSCP, etc.

2. Configure Environment
cd [home/user/ebuilder
cp .env.example .env
nano .env

Minimum required changes

SECRET _KEY=generate-a-long-random-string-here

ALLOWED _HOSTS=yourdomain.com,www.yourdomain.com
CSRF_TRUSTED_ORIGINS=https://yourdomain.comhttps://www.yourdomain.com

STRIPE_PUBLIC _KEY=pk _live _xxx
STRIPE_SECRET _KEY=sk_live_xxx
STRIPE_WEBHOOK _SECRET=whsec _xxx

Generate a secret key.
python3 -c "import secrets; print(secrets.token_urlsafe(50))"

3. Build and Start
docker compose build

docker compose up -d

4.Create Admin User
docker compose exec web python manage.py createsuperuser

5. Visit your site
http://localhost:8000 (or your domain)

6.3 Environment Configuration
Essential .env variables:

Django Settings
SECRET_KEY=your-unique-secret-key-here
DEBUG=False

ALLOWED _HOSTS=yourdomain.com,www.yourdomain.com

Stripe (required for payments)
STRIPE_PUBLIC _KEY=pk_live_...
STRIPE_SECRET_KEY=sk_live_...
STRIPE_WEBHOOK _SECRET=whsec_...

Email (optional but recommended)
EMAIL_HOST=smtp.example.com
EMAIL_PORT=587

EMAIL_HOST _USER=your@email.com
EMAIL_HOST _PASSWORD=your-password

Database (optional - defaults to SQLite)
DATABASE _URL=postgresq|://userpass@db:5432/ebuilder

6.4 SSL/HTTPS Setup

For production, configure SSL through your reverse proxy (Nginx, Caddy, or
HestiaCP). The application runs behind the proxy on port 8000.

See the full instructions inside the folder called Your Documentation

7. Configuration

7.1Initial Site Setup

After installation, configure your site through the admin interface:

1.

Visit fadmin and log in with your superuser credentials

2. Go to Pages — Site Settings

3. Configure: Business name, Site URL, Support email, Logo, Currency,

Default SEO

7.2 Shop Configuration

Configure shop-specific settings in Shop — Shop Settings:

Hero Section: Title, subtitle, image, call-to-action
Products Per Page: Pagination settings

Display Mode: Grid or list view

Intro Section: Welcome text and styling

Promo Blocks: Three-column promotional cards
Product Spotlight: Featured product highlight section

7.3 Homepage Configuration

The homepage is controlled through Pages — Homepage Settings:

Layout Selection: Shop-focused or content-focused

Section Visibility: Toggle blog posts, products, gallery

Section Ordering: Control display order of components

Section Titles & Descriptions: Customize each section’s heading

8. Admin Interface Guide

The eCommerce Builder uses Django’s admin interface enhanced with the
Adminita theme for all management tasks.

8.1 Admin Structure
The admin is arranged into logical sections:

« ACCOUNTS: Users, email addresses

« AUTHENTICATION: Groups, permissions

« BLOG: Posts, categories

« INFO PAGES: Documentation, policies, categories

« PAGES: Site settings, pages, hero sections, dashboard settings
« SHOP: Products, categories, orders, reviews, shop settings

« SITES: Django sites framework

8.2 Key Admin Features

« Collapsible Sections: Fieldsets collapse to reduce clutter
« List Filters: Filter products by category, status, featured

« Search: Quick search across titles and content

« Bulk Actions: Select multiple items for batch operations
- Dark Mode: Toggle between light and dark themes

8.3 Content Block Management

Pages use inline content blocks managed within the page admin:

+ Hero Sections: Add one hero banner per page

« Page Sections: Rich text content with TinyMCE editor

« Two and Three-Column Blocks: Feature cards with images

« Gallery Blocks: Image galleries (click through to manage images)

« FAQ Blocks: Question/answer pairs (click through to manage items)

9. Shop Module

9.1 Product Management

Products are managed through Shop — Products:

Product Fields

« Title & Slug: Product name and URL-friendly identifier
« Category: Product categorization

- Description: Full product description (TinyMCE rich text)
« Excerpt: Short description for listings

- Price (pence): Price in smallest currency unit

« Sale Price: Optional discounted price

« Preview Image: Product thumbnail for listings

« Video URL: Optional YouTube video embed

« Download Limit: Maximum downloads per purchase
+ Featured: Highlight on shop homepage

« Published: Control visibility

Product Downloads
Each product can have multiple downloadable files:

 Title: Display name for the download
- File: The actual downloadable file (stored securely)
« Version: Track file versions

« Order: Display sequence for multiple downloads

9.2 Order Manhagement
Orders are created automatically after successful Stripe payments:

« Order ID: Unique identifier (auto-generated)

« Customer: Linked to user account

« Status: Pending, Completed, Failed, Refunded

« Payment Intent ID: Stripe reference for verification

« Order Iltems: Products purchased with prices paid

« Downloads Remaining: Track per-item download limits

9.3 Cart System

The cart is session-based and does not require login:

+ Add to Cart: Products added via AJAX

« Quantity Updates: Adjust quantities in cart view

« Cart Persistence: Survives browser sessions

« Checkout Requires Login: User must authenticate to purchase

9.4 Checkout Flow

. Customer adds products to cart
. Proceeds to checkout (Iogin required)

4
5
6. Stripe Paymentintent created with cart total
7. Customer enters payment details in Stripe Elements form
8. Payment processed by Stripe

9. Webhook confirms payment success

10. Order created, confirmation email sent

11. Customer accesses downloads via dashboard

10. Blog Module

10.1 Post Management

+ Title & Slug: Post title and URL identifier

« Category: Blog post categorization

- Content: Full post content (TinyMCE rich text)

« Image: Featured image for post and thumbnails

« External Image URL: Alternative to uploaded image
+ YouTube URL: Embed video instead of/alongside image
« Publish Date: Schedule posts for future publication
« Status: Draft or Published

« Featured: Highlight on blog index

+ Resource: Add a PDF that user can download

« Meta Title/Description: SEO customization

10.2 YouTube Integration
Posts support YouTube video embeds:

« Paste any YouTube URL (watch, share, or embed format)
« Video ID automatically extracted

« Thumbnail pulled from YouTube for listings

+ Responsive embed on post detail page

« Falls back to featured image if no video

10.3 Blog Display

+ Blog Index: Paginated list of published posts

« Featured Posts: Highlighted section on first page
« Category Filtering: Browse posts by category

« Social Sharing: Share buttons on each post

1. Pages Module (Page Builder)

11.1Page Types
Each page uses a template that determines its layout:

« Homepage: Dynamic homepage with configurable sections
« About: Standard about page layout
« Custom Page: Flexible template for any content

« Gallery Page: Image-focused layout

11.2 Content Blocks

Hero Section

Full-width banner sections with:

+ Title and subtitle

« Body content (rich text)

« Background image

« Call-to-action button with link
« Order position control

- Active/inactive toggle

Text Block (no image)
One column block of text with white background:

« Each column: title and body content
« Perfect for page introduction and adding text sections
+ Optional button with link

Two Column Block

Two sections with image and text:

« Title and subtitle

« Body content (TinyMCE rich text)
+ Image appears on left hand side
« Optional button with link

Three-Column Block

Feature cards displayed in three columns:

« Each column: title, image, body content
« Perfect for features, benefits, or services
« Images displayed as icons

Gallery Block

Image galleries with:

« Gallery title
« Multiple images with captions in masonry grid
« Automatic thumbnail generation

+ Lightbox viewing

FAQ Block
Expandable FAQ sections:
« Block title

« Multiple question/answer pairs

« Accordion-style expansion

11.3 Site Settings
Global settings managed through Pages — Site Settings:

« Business Name: Displayed in header and footer
+ Site URL: Used for canonical URLs and schema

« Support Email: Contact email address

+ Logo: Site logo for header

« Currency Code: Payment currency

+ Site Color: Add your default brand colors

« Social Links: Footer social media links

+ Newsletter HTML: Email signup embed code
- Default SEO: Fallback meta title/description

12. InfoPages Module

12.1 Documentation Pages
Documentation pages accessible at /docs/:

« Category Organization: Group docs into categories
« Automatic TOC: Table of contents generated from headings
« Rich Content: TinyMCE editor for formatted content

« SEO Fields: Custom meta title and description

12.2 Policy Pages
Legal/policy pages accessible at [policies/:

« Privacy Policy

« Terms of Service

« Refund Policy

« Cookie Policy

+ Any other legal documents

12.3 InfoPage Fields

+ Title & Slug: Page title and URL

« Page Type: Documentation or Policy
- Category: Organization (docs only)

- Content: Full page content (rich text)

« Published: Control visibility and Last Updated: Automatic timestamp

13. SEO Features

13.1 Schema.org Structured Data

eBuilder includes reusable schema templates in templates/includes/seo/:

« schema_product.html: Product rich snippets with pricing and reviews
« schema_article.html: Blog post structured data

+ schema_itemlist.ntml: Product and post listing pages

« schema_organization.html: Business/organization data

« schema_webpage.html: Generic page markup

« og_meta.html: Open Graph and Twitter Card tags

13.2 Per-Page SEO
Every content type supports custom SEO:

« Products: Meta title, description, OG image
« Blog Posts: Meta title, description, keywords
« Pages: Meta title, description

« InfoPages: Meta title, description

13.3 Technical SEO

XML Sitemap: Auto-generated at [sitemap.xml
- Robots.txt: Configurable at [robots.txt

« Canonical URLs: Prevent duplicate content

« Al Bot Support: Metadata for Al crawlers

14. Authentication System

14.1 django-allauth Integration

eBuilder uses django-allauth for authentication:

Email-based login (no usernames)

Email verification required
« Password reset via email

Customizable email templates

14.2 Custom User Model
The accounts app provides a custom user model with:

« Email as primary identifier
« First name and last name fields
« No username field

14.3 Customer Dashboard

Authenticated users access their dashboard at /accounts/dashboard/:

« Order History: List of all purchases
« Downloads: Access purchased files
« Wishlist: Saved products
« Profile: Account settings
14.4 Admin User Creation

Use the custom management command for verified admin accounts:

docker compose exec web python manage.py createsuperuser_verified

This creates the user AND verifies their email address automatically.

15. Theming & Customization

15.1CSS Custom Properties

Colors are controlled via CSS variables in static/css/base.css for self-hosted
and also through the Site Settings page:

rroot {
--color-primary: #1e3a8a;
--color-secondary: #3b82f6;
--color-accent: #60a5fa;

}

15.2 Tailwind CSS 4
The frontend uses Tailwind CSS 4 with:

« Utility-first styling

« CSS variable integration

« Responsive design utilities
+ Dark mode support

15.3 Template Customization

Templates are organized by app:

- templates/: Global templates and includes

- shop/templates/: Shop-specific templates

- blog/templates/: Blog templates

- pages/templates/: Page and section templates
« account/templates/: Authentication templates

15.4 Adminita Theme

The admin interface uses Adminita:

« Modern, clean design

« Dark mode toggle

« Better mobile responsiveness

« Collapsible navigation
https://adminita.todiane.com

16. Docker Deployment (self-hosted version)

16.1 Container Architecture
The default docker-compose.yml runs a single web container:

+ web: Django application with Gunicorn
« Volumes: Persistent storage for database, mediq, logs
« Port 8000: Exposed for reverse proxy

16.2 Volume Mounts

Critical distinction between baked-in and mounted content:

« Baked-in (in container): Templates, static files, code

« Mounted (persistent): Database, media uploads, logs
Template changes require container rebuild. Data persists across
deployments.

16.3 Common Docker Commands
Start containers

docker compose up -d

View logs
docker compose logs -f web

Run management commands
docker compose exec web python manage.py migrate

https://adminita.todiane.com/

docker compose exec web python manage.py collectstatic

Rebuild aofter code changes
docker compose build

docker compose up -d

Stop containers

docker compose down

17. Maintenance & Updates

17.1 Backup Strategy
Essential backup commands:

Database backup (JSON)

docker compose exec web python manage.py dumpdata > backup.json

Media files backup
tar -czf media-backup.tar.gz data/media/

Full data directory backup
tar -czf ebuilder-backup.tar.gz data/

17.2 Restore Procedures

Restore database

docker compose exec web python manage.py loaddata backup.json

Restore media

tar -xzf media-backup.tar.gz

17.3 Updates

To update to the latest version:

Download
Download from the dashboard area (you have up to 5 downloads).
Backup your existing site before beginning

Rebuild container

docker compose build

Apply migrations
docker compose exec web python manage.py migrate

Collect static files

docker compose exec web python manage.py collectstatic --no-input

Restart
docker compose restart

18. Security Considerations

18.1 Built-in Security

CSRF Protection: All forms protected

SQL Injection: Django ORM prevents injection

XSS Prevention: Template auto-escaping

Secure Cookies: HTTPS-only session cookies

Password Hashing: PBKDF2 with SHA256

HoneyPot (to stop bots signing up) and Disposable Email signup
protection

18.2 File Download Security

Files served through authenticated views only
Direct URL access blocked

Download limits enforced per purchase

Files stored outside web root

18.3 Stripe Security

Webhook signature verification
No card data touches your server
Paymentintent API for proper flow

18.4 Production Checklist

Set DEBUG=False

Use strong SECRET _KEY

Configure ALLOWED_HOSTS

Enable HTTPS via reverse proxy

Set up email for password resets
Configure Stripe webhook endpoint

19. Troubleshooting

19.1 Common Issues

Port 8000 Already in Use
Edit docker-compose.yml and change ports from "“8000:8000" to "8001:8000"

or another available port.

Permission Errors on Media Files

sudo chown -R 1000:1000 data/

Static Files Not Loading
docker compose exec web python manage.py collectstatic --no-input
Admin Styling Broken

Verify Adminita is installed:
docker compose exec web pip list | grep adminita

Email Not Sending

Check EMAIL_* settings in .env and verify SMTP credentials.

19.2 Debugging

« Check logs: docker compose logs -f web

« Django shell: docker compose exec web python manage.py shell
+ Database: docker compose exec web python manage.py dbshell
- Error logs: data/logs/django-error.log

20. Roadmap & Future Development

20.1 Current Version (v1.0)

« Complete digital product shop
Blog and content management
Docker-first distribution
Stripe integration

« Full SEO implementation

Multi-currency support

20.2 Planned Features

« Subscription products
Newsletter integration
Advanced analytics dashboard
Coupon/discount codes

+ Multiple payment gateways

Credits & Acknowledgments

eBuilder is built with these excellent open source projects:

Django: https://www.djangoproject.com/
Tailwind CSS: https://tailwindcss.com/
- Stripe: https://stripe.com/
Adminita: https://github.com/djangify/adminita
Alpine.js: https:/[alpinejs.dev/
HTMX: https://htmx.org/
« TinyMCE: https://www.tiny.cloud/
django-allauth: https://django-allauth.readthedocs.io/

Own your store. Own your data. Own your future.
https://www.djangify.com

Created by Diane Corriette | https://github.com/todiane

https://www.djangify.com

	
	
	Table of Contents
	1. Introduction & Overview
	Philosophy
	What the eCommerce Builder Is NOT

	2. Target Audience
	Primary Users
	Technical Requirements

	
	3. Key Features
	3.1 Complete Shop System
	3.2 Stripe Integration
	
	3.3 Content Management
	Blog System
	Custom Pages (Page Builder)
	InfoPages

	
	
	3.4 SEO & Discovery
	3.5 Design & User Interface

	
	4. Architecture & Tech Stack
	4.1 Core Technologies
	4.2 Application Architecture
	4.3 Database Strategy

	5. Project Structure
	6. Installation & Deployment
	6.1 Prerequisites
	6.2 Quick Start Installation
	6.3 Environment Configuration
	6.4 SSL/HTTPS Setup

	7. Configuration
	7.1 Initial Site Setup
	7.2 Shop Configuration
	7.3 Homepage Configuration

	8. Admin Interface Guide
	8.1 Admin Structure
	8.2 Key Admin Features
	8.3 Content Block Management
	9.1 Product Management
	Product Fields
	Product Downloads

	9.2 Order Management
	9.3 Cart System
	9.4 Checkout Flow

	10. Blog Module
	10.1 Post Management
	10.2 YouTube Integration
	10.3 Blog Display

	11. Pages Module (Page Builder)
	11.1 Page Types
	11.2 Content Blocks
	Hero Section
	Text Block (no image)
	Two Column Block
	Three-Column Block
	Gallery Block
	FAQ Block

	11.3 Site Settings

	12. InfoPages Module
	12.1 Documentation Pages
	12.2 Policy Pages
	12.3 InfoPage Fields

	13. SEO Features
	13.1 Schema.org Structured Data
	13.2 Per-Page SEO
	13.3 Technical SEO

	
	14. Authentication System
	14.1 django-allauth Integration
	14.2 Custom User Model
	14.3 Customer Dashboard
	14.4 Admin User Creation

	15. Theming & Customization
	15.1 CSS Custom Properties
	15.2 Tailwind CSS 4
	15.3 Template Customization
	15.4 Adminita Theme

	16. Docker Deployment (self-hosted version)
	16.1 Container Architecture
	16.2 Volume Mounts
	16.3 Common Docker Commands

	17. Maintenance & Updates
	17.1 Backup Strategy
	17.2 Restore Procedures
	17.3 Updates

	18. Security Considerations
	18.1 Built-in Security
	18.2 File Download Security
	18.3 Stripe Security
	18.4 Production Checklist

	19. Troubleshooting
	19.1 Common Issues
	Port 8000 Already in Use
	Permission Errors on Media Files
	Static Files Not Loading
	Admin Styling Broken
	Email Not Sending

	19.2 Debugging

	20. Roadmap & Future Development
	20.1 Current Version (v1.0)
	20.2 Planned Features

	Credits & Acknowledgments

