
Djangify eCommerce Builder 

 
 

Self-Hosted and Managed Hosting eCommerce Platform ​
for Digital Downloads 

Comprehensive Documentation & Technical Reference 

Version 1.0 | Django 5.2 LTS | Docker-First Distribution 

 

 

https://www.djangify.com


Table of Contents 

1. Introduction & Overview 

2. Target Audience 

3. Key Features 

4. Architecture & Tech Stack 

5. Project Structure 

6. Installation & Deployment 

7. Configuration 

8. Admin Interface Guide 

9. Shop Module 

10. Blog Module 

11. Pages Module (Page Builder) 

12. InfoPages Module 

13. SEO Features 

14. Authentication System 

15. Theming & Customization 

16. Docker Deployment 

17. Maintenance & Updates 

18. Security Considerations 

19. Troubleshooting 

20. Roadmap & Future Development (Credits and Acknowledgements)  



1. Introduction & Overview 

The Djangify eCommerce Builder (aka eBuilder) is an eCommerce platform 
specifically designed for selling digital downloads.  

Built with Django  and distributed via Docker, it provides creators and 
businesses with complete ownership of their online store, data, and revenue 
streams. 

It is available as a self-hosted version that you host yourself or with hosting 
(and maintenance) managed by Djangify. 

Unlike SaaS platforms such as Shopify or Gumroad,  eBuilder eliminates 
recurring platform fees, transaction percentages, and vendor lock-in. Once 
installed, the self-hosted version is yours to host anywhere, change freely, and 
scale according to your needs. 

Philosophy 

The eCommerce Builder follows these core principles: 

•​ Ownership First: Your store, your data, your customers, your income 
•​ Docker-First Distribution: Consistent deployments across any 

environment 
•​ Admin-First Design: Manage everything through Django’s powerful 

admin interface 
•​ SQLite by Default: Simple, reliable, and performant without database 

server complexity 
•​ No Feature Bloat: Essential ecommerce functionality without 

unnecessary complexity 

What the eCommerce Builder Is NOT 

•​ Not for shared hosting; requires Docker/VPS environment 
•​ Not a page builder it is an eCommerce system with CMS capabilities 

https://djangify.com/shop/product/self-hosted-digital-ecommerce-platform/
https://djangify.com/shop/product/digital-ecommerce-platform-managed-hosting/
https://djangify.com/shop/product/digital-ecommerce-platform-managed-hosting/


•​ Not for physical products it is for digital downloads only (v1) 
•​ Not a SaaS - you host and own everything (self-hosted) 
•​ Not a SaaS - we maintain everything and you can move your whole site 

by taking your database with your data - (managed hosting) 
•​ Not a marketplace. It is a single-vendor store only 

2. Target Audience 

The Djangify eCommerce Builder is designed for creators and businesses who 
want independence from platform fees and restrictions: 

Primary Users 

•​ Digital Product Creators: Selling PDFs, guides, templates, or digital tools 
•​ Course Creators: Offering downloadable educational content 
•​ Digital Artists: Selling artwork, design assets, or creative resources 
•​ Software Developers: Distributing scripts, code templates, or tools 
•​ Musicians & Audio Producers: Selling beats, samples, or audio files 
•​ Photographers: Distributing stock photos or preset packs 

Technical Requirements 

•​ Basic command line familiarity 
•​ Access to a VPS (DigitalOcean, Hetzner, Vultr, etc.) 
•​ Domain name 
•​ Stripe account for payment processing 

 



3. Key Features 

3.1 Complete Shop System 

The shop module provides everything needed for selling digital products: 

•​ Product Management: Create products with titles, descriptions, images, 
and pricing 

•​ Multiple Downloads Per Product: Attach multiple downloadable files to a 
single product.  

•​ Download Limits: Configure per-purchase download limits for security 
•​ Categories: Organize products into categories with their own pages 
•​ Secure Downloads: Files served through authenticated endpoints, not 

direct URLs 
•​ Product Reviews: Customers can leave ratings and reviews 
•​ Wishlist: Users can save products for later 
•​ Order History: Complete purchase history accessible from customer 

dashboard 
•​ Multi-Currency Support: Configure currency via Site Settings 
•​ Video Embeds: YouTube video support for product demonstrations 

3.2 Stripe Integration 

Payment processing is handled entirely through Stripe: 

•​ Stripe Checkout: Modern, secure payment flow 
•​ PaymentIntent API: Proper payment handling with webhook verification 
•​ Automatic Receipts: Stripe sends receipts to customers 
•​ Webhook Handling: Secure webhook endpoint for payment 

confirmations 
•​ Test Mode Support: Full testing capability with Stripe test keys 

 



3.3 Content Management 

Beyond the shop, eBuilder includes a complete content management system: 

Blog System 

•​ Full blogging with categories 
•​ Featured posts highlighted on the blog index 
•​ YouTube video embeds with automatic thumbnail extraction 
•​ External image URL support 
•​ Meta titles and descriptions for SEO 
•​ Social sharing buttons 

Custom Pages (Page Builder) 

•​ Hero Sections: Full-width banners with title, subtitle, body, image, and 
CTA button 

•​ Page Sections: Rich text content blocks with images 
•​ Three-Column Blocks: Feature cards with icons/images and 

descriptions 
•​ Gallery Blocks: Image galleries with automatic thumbnail generation 
•​ FAQ Blocks: Expandable question/answer sections 
•​ Template Selection: Homepage, About, Custom Page, or Gallery layouts 

InfoPages 

•​ Documentation pages with category organization 
•​ Policy pages (Privacy, Terms, Refunds, etc.) 
•​ Automatic table of contents generation from headings 
•​ Separate URL structures (/docs/ and /policies/) 

 

 



3.4 SEO & Discovery 

Comprehensive SEO features are built into every page: 

•​ Schema.org Structured Data: Product, Article, ItemList, Organization, and 
WebPage schemas 

•​ Open Graph Tags: Facebook and social media optimization 
•​ Twitter Card Integration: Rich previews on Twitter/X 
•​ AI Search Metadata: Page-type metadata for AI crawlers 
•​ Automatic Sitemap: XML sitemap generation 
•​ Robots.txt: Configurable with AI bot support 
•​ Canonical URLs: Prevent duplicate content issues 
•​ Meta Titles & Descriptions: Per-page SEO customization 

3.5 Design & User Interface 

•​ Fully Responsive: Mobile-first design that works on all devices 
•​ Tailwind CSS 4: Modern utility-first styling with CSS custom properties 
•​ Adminita Theme: Beautiful, dark-mode compatible admin interface 
•​ ARIA Compliant: Accessible to screen readers and assistive 

technologies 
•​ HTMX Integration: Dynamic interactions without page reloads 
•​ Alpine.js: Lightweight JavaScript for UI interactions 

 



4. Architecture & Tech Stack 

4.1 Core Technologies 

Component Technology 

Framework Django 5.2 LTS 

Frontend CSS Tailwind CSS 4 

Frontend JS Alpine.js, HTMX 

Database SQLite with WAL mode (default) 

Alternative DB PostgreSQL (optional) 

Payments Stripe 

Authentication django-allauth 

Rich Text Editor TinyMCE 

Admin Theme Adminita 

Container Docker + Gunicorn 

Reverse Proxy Nginx/Caddy 

Static Files WhiteNoise 

4.2 Application Architecture 

The eCommerce Builder follows Django’s app-based architecture: 

•​ accounts: User authentication, registration, customer dashboard 
•​ shop: Products, categories, cart, checkout, orders, reviews, wishlist 
•​ blog: Posts, categories, featured content 
•​ pages: Site settings, custom pages, page builder blocks 
•​ infopages: Documentation and policy pages 



•​ hosting: Managed hosting signup flow (for service providers) 

4.3 Database Strategy 

SQLite with WAL (Write-Ahead Logging) mode is the default database: 

•​ No separate database server required 
•​ Excellent read performance for typical ecommerce workloads 
•​ WAL mode enables concurrent reads during writes 
•​ Simple backup: just copy the database file 
•​ PostgreSQL can be used if wanted as an alternative for 

high-concurrency scenarios 

5. Project Structure 

The project follows Django conventions with Docker-first organization: 

ebuilder/ 
├── docker-compose.yml      # Container orchestration 
├── Dockerfile              # Application container definition 
├── requirements.txt        # Python dependencies 
├── manage.py               # Django management script 
├── .env.example            # Environment variable template 
│ 
├── ebuilder/               # Project configuration 
│   ├── settings.py         # Main Django settings 
│   ├── urls.py             # Root URL configuration 
│   ├── sitemaps.py         # Sitemap configuration 
│   └── wsgi.py             # WSGI entry point 
│ 
├── accounts/               # User authentication app 
│   ├── models.py           # Custom user model 
│   ├── views.py            # Dashboard, profile views 
│   ├── adapters.py         # Allauth adapter customization 
│   └── templates/          # Auth templates 
│ 



├── shop/                   # eCommerce app 
│   ├── models.py           # Product, Order, Review models 
│   ├── views/              # Shop views (products, cart, checkout) 
│   ├── cart.py             # Session-based cart 
│   ├── emails.py           # Order confirmation emails 
│   ├── webhooks.py         # Stripe webhook handling 
│   └── templates/          # Shop templates 
│ 
├── blog/                   # Blog app 
│   ├── models.py           # Post, Category models 
│   └── templates/          # Blog templates 
│ 
├── pages/                  # Page builder app 
│   ├── models.py           # Page, Hero, content block models 
│   ├── context_processors.py  # Global template context 
│   └── templates/          # Page templates and sections 
│ 
├── infopages/              # Documentation app 
│   ├── models.py           # InfoPage, Category models 
│   └── templates/          # Doc/policy templates 
│ 
├── templates/              # Global templates 
│   ├── base.html           # Base template 
│   ├── includes/           # Reusable components 
│   │   └── seo/            # SEO schema templates 
│   └── account/            # Allauth template overrides 
│ 
├── static/                 # Static assets 
│   ├── css/                # Stylesheets 
│   ├── js/                 # JavaScript files 
│   └── images/             # Static images 
│ 
└── data/                   # Persistent data (mounted volume) 
    ├── db/                 # SQLite database 
    ├── media/              # User uploads 
    └── logs/               # Application logs 



6. Installation & Deployment 

6.1 Prerequisites 

Before starting, ensure you have: 
 
| Requirement           | Minimum               | Recommended                       | 
|-------------- ---|----------------|--------------------------| 
|  VPS/Server              | 2 CPU, 1GB RAM    | 3 CPU, 2GB RAM                       | 
| OS                              | Ubuntu 22.04+     | Ubuntu 24.04 LTS                     | 
| Docker                      | v24+                       | Latest                                         | 
| Docker Compose   | v2.20+                    | Latest                                         | 
| Domain                     | Required               | With SSL                                     | 
| Stripe Account        | Required                | Live mode for production     | 

 
Suggested VPS providers: Hetzner, DigitalOcean, Linode, Vultr 

6.2 Quick Start Installation 

The standard installation only takes a few minutes: 

1.​ Upload the eCommerce Builder folder to your server: 
# Using scp from your local machine 
scp -r ebuilder-selfhosted/ user@yourserver:/home/user/ebuilder 
 
Or upload via SFTP using FileZilla, WinSCP, etc. 
 
2. Configure Environment 
cd /home/user/ebuilder 
cp .env.example .env 
nano .env 
​

Minimum required changes 
SECRET_KEY=generate-a-long-random-string-here 
ALLOWED_HOSTS=yourdomain.com,www.yourdomain.com 
CSRF_TRUSTED_ORIGINS=https://yourdomain.com,https://www.yourdomain.com 



STRIPE_PUBLIC_KEY=pk_live_xxx 
STRIPE_SECRET_KEY=sk_live_xxx 
STRIPE_WEBHOOK_SECRET=whsec_xxx 
 
Generate a secret key: 
python3 -c "import secrets; print(secrets.token_urlsafe(50))" 
 
3. Build and Start 
docker compose build 
docker compose up -d 
​

4. Create Admin User 
docker compose exec web python manage.py createsuperuser 
 
5. Visit your site 
http://localhost:8000 (or your domain) 

6.3 Environment Configuration 

Essential .env variables: 

# Django Settings 
SECRET_KEY=your-unique-secret-key-here 
DEBUG=False 
ALLOWED_HOSTS=yourdomain.com,www.yourdomain.com 
 
# Stripe (required for payments) 
STRIPE_PUBLIC_KEY=pk_live_... 
STRIPE_SECRET_KEY=sk_live_... 
STRIPE_WEBHOOK_SECRET=whsec_... 
 
# Email (optional but recommended) 
EMAIL_HOST=smtp.example.com 
EMAIL_PORT=587 
EMAIL_HOST_USER=your@email.com 
EMAIL_HOST_PASSWORD=your-password 
 



# Database (optional - defaults to SQLite) 
# DATABASE_URL=postgresql://user:pass@db:5432/ebuilder 

6.4 SSL/HTTPS Setup 

For production, configure SSL through your reverse proxy (Nginx, Caddy, or 
HestiaCP). The application runs behind the proxy on port 8000. 

See the full instructions inside the folder called Your Documentation  



7. Configuration 

7.1 Initial Site Setup 

After installation, configure your site through the admin interface: 

1.​ Visit /admin and log in with your superuser credentials 
2.​ Go to Pages → Site Settings 
3.​ Configure: Business name, Site URL, Support email, Logo, Currency, 

Default SEO 

7.2 Shop Configuration 

Configure shop-specific settings in Shop → Shop Settings: 

•​ Hero Section: Title, subtitle, image, call-to-action 
•​ Products Per Page: Pagination settings 
•​ Display Mode: Grid or list view 
•​ Intro Section: Welcome text and styling 
•​ Promo Blocks: Three-column promotional cards 
•​ Product Spotlight: Featured product highlight section 

7.3 Homepage Configuration 

The homepage is controlled through Pages → Homepage Settings: 

•​ Layout Selection: Shop-focused or content-focused 
•​ Section Visibility: Toggle blog posts, products, gallery 
•​ Section Ordering: Control display order of components 
•​ Section Titles & Descriptions: Customize each section&#x2019;s heading 

 



8. Admin Interface Guide 

The eCommerce Builder uses Django’s admin interface enhanced with the 
Adminita theme for all management tasks. 

8.1 Admin Structure 

The admin is arranged into logical sections: 

•​ ACCOUNTS: Users, email addresses 
•​ AUTHENTICATION: Groups, permissions 
•​ BLOG: Posts, categories 
•​ INFO PAGES: Documentation, policies, categories 
•​ PAGES: Site settings, pages, hero sections, dashboard settings 
•​ SHOP: Products, categories, orders, reviews, shop settings 
•​ SITES: Django sites framework 

8.2 Key Admin Features 

•​ Collapsible Sections: Fieldsets collapse to reduce clutter 
•​ List Filters: Filter products by category, status, featured 
•​ Search: Quick search across titles and content 
•​ Bulk Actions: Select multiple items for batch operations 
•​ Dark Mode: Toggle between light and dark themes 

8.3 Content Block Management 

Pages use inline content blocks managed within the page admin: 

•​ Hero Sections: Add one hero banner per page 
•​ Page Sections: Rich text content with TinyMCE editor 
•​ Two and Three-Column Blocks: Feature cards with images 
•​ Gallery Blocks: Image galleries (click through to manage images) 
•​ FAQ Blocks: Question/answer pairs (click through to manage items) 



9. Shop Module 

9.1 Product Management 

Products are managed through Shop → Products: 

Product Fields 

•​ Title & Slug: Product name and URL-friendly identifier 
•​ Category: Product categorization 
•​ Description: Full product description (TinyMCE rich text) 
•​ Excerpt: Short description for listings 
•​ Price (pence): Price in smallest currency unit 
•​ Sale Price: Optional discounted price 
•​ Preview Image: Product thumbnail for listings 
•​ Video URL: Optional YouTube video embed 
•​ Download Limit: Maximum downloads per purchase 
•​ Featured: Highlight on shop homepage 
•​ Published: Control visibility 

Product Downloads 

Each product can have multiple downloadable files: 

•​ Title: Display name for the download 
•​ File: The actual downloadable file (stored securely) 
•​ Version: Track file versions 
•​ Order: Display sequence for multiple downloads 

9.2 Order Management 

Orders are created automatically after successful Stripe payments: 

•​ Order ID: Unique identifier (auto-generated) 
•​ Customer: Linked to user account 



•​ Status: Pending, Completed, Failed, Refunded 
•​ Payment Intent ID: Stripe reference for verification 
•​ Order Items: Products purchased with prices paid 
•​ Downloads Remaining: Track per-item download limits 

9.3 Cart System 

The cart is session-based and does not require login: 

•​ Add to Cart: Products added via AJAX 
•​ Quantity Updates: Adjust quantities in cart view 
•​ Cart Persistence: Survives browser sessions 
•​ Checkout Requires Login: User must authenticate to purchase 

9.4 Checkout Flow 

4.​ Customer adds products to cart 
5.​ Proceeds to checkout (login required) 
6.​ Stripe PaymentIntent created with cart total 
7.​ Customer enters payment details in Stripe Elements form 
8.​ Payment processed by Stripe 
9.​ Webhook confirms payment success 
10.​Order created, confirmation email sent 
11.​ Customer accesses downloads via dashboard 

 



10. Blog Module 

10.1 Post Management 

•​ Title & Slug: Post title and URL identifier 
•​ Category: Blog post categorization 
•​ Content: Full post content (TinyMCE rich text) 
•​ Image: Featured image for post and thumbnails 
•​ External Image URL: Alternative to uploaded image 
•​ YouTube URL: Embed video instead of/alongside image 
•​ Publish Date: Schedule posts for future publication 
•​ Status: Draft or Published 
•​ Featured: Highlight on blog index 
•​ Resource: Add a PDF that user can download 
•​ Meta Title/Description: SEO customization 

10.2 YouTube Integration 

Posts support YouTube video embeds: 

•​ Paste any YouTube URL (watch, share, or embed format) 
•​ Video ID automatically extracted 
•​ Thumbnail pulled from YouTube for listings 
•​ Responsive embed on post detail page 
•​ Falls back to featured image if no video 

10.3 Blog Display 

•​ Blog Index: Paginated list of published posts 
•​ Featured Posts: Highlighted section on first page 
•​ Category Filtering: Browse posts by category 
•​ Social Sharing: Share buttons on each post 

 



11. Pages Module (Page Builder) 

11.1 Page Types 

Each page uses a template that determines its layout: 

•​ Homepage: Dynamic homepage with configurable sections 
•​ About: Standard about page layout 
•​ Custom Page: Flexible template for any content 
•​ Gallery Page: Image-focused layout 

11.2 Content Blocks 

Hero Section 

Full-width banner sections with: 

•​ Title and subtitle 
•​ Body content (rich text) 
•​ Background image 
•​ Call-to-action button with link 
•​ Order position control 
•​ Active/inactive toggle 

Text Block (no image) 

One column block of text with white background: 

•​ Each column: title and body content 
•​ Perfect for page introduction and adding text sections 
•​ Optional button with link 

Two Column Block 

Two sections with image and text: 

•​ Title and subtitle 



•​ Body content (TinyMCE rich text) 
•​ Image appears on left hand side 
•​ Optional button with link 

Three-Column Block 

Feature cards displayed in three columns: 

•​ Each column: title, image, body content 
•​ Perfect for features, benefits, or services 
•​ Images displayed as icons 

Gallery Block 

Image galleries with: 

•​ Gallery title 
•​ Multiple images with captions in masonry grid 
•​ Automatic thumbnail generation 
•​ Lightbox viewing 

FAQ Block 

Expandable FAQ sections: 

•​ Block title 
•​ Multiple question/answer pairs 
•​ Accordion-style expansion 

11.3 Site Settings 

Global settings managed through Pages → Site Settings: 

•​ Business Name: Displayed in header and footer 
•​ Site URL: Used for canonical URLs and schema 
•​ Support Email: Contact email address 
•​ Logo: Site logo for header 



•​ Currency Code: Payment currency 
•​ Site Color: Add your default brand colors 
•​ Social Links: Footer social media links 
•​ Newsletter HTML: Email signup embed code 
•​ Default SEO: Fallback meta title/description 

12. InfoPages Module 

12.1 Documentation Pages 

Documentation pages accessible at /docs/: 

•​ Category Organization: Group docs into categories 
•​ Automatic TOC: Table of contents generated from headings 
•​ Rich Content: TinyMCE editor for formatted content 
•​ SEO Fields: Custom meta title and description 

12.2 Policy Pages 

Legal/policy pages accessible at /policies/: 

•​ Privacy Policy 
•​ Terms of Service 
•​ Refund Policy 
•​ Cookie Policy 
•​ Any other legal documents 

12.3 InfoPage Fields 

•​ Title & Slug: Page title and URL 
•​ Page Type: Documentation or Policy 
•​ Category: Organization (docs only) 
•​ Content: Full page content (rich text) 
•​ Published: Control visibility and Last Updated: Automatic timestamp



13. SEO Features 

13.1 Schema.org Structured Data 

eBuilder includes reusable schema templates in templates/includes/seo/: 

•​ schema_product.html: Product rich snippets with pricing and reviews 
•​ schema_article.html: Blog post structured data 
•​ schema_itemlist.html: Product and post listing pages 
•​ schema_organization.html: Business/organization data 
•​ schema_webpage.html: Generic page markup 
•​ og_meta.html: Open Graph and Twitter Card tags 

13.2 Per-Page SEO 

Every content type supports custom SEO: 

•​ Products: Meta title, description, OG image 
•​ Blog Posts: Meta title, description, keywords 
•​ Pages: Meta title, description 
•​ InfoPages: Meta title, description 

13.3 Technical SEO 

•​ XML Sitemap: Auto-generated at /sitemap.xml 
•​ Robots.txt: Configurable at /robots.txt 
•​ Canonical URLs: Prevent duplicate content 
•​ AI Bot Support: Metadata for AI crawlers 

 
 

 



14. Authentication System 

14.1 django-allauth Integration 

eBuilder uses django-allauth for authentication: 

•​ Email-based login (no usernames) 
•​ Email verification required 
•​ Password reset via email 
•​ Customizable email templates 

14.2 Custom User Model 

The accounts app provides a custom user model with: 

•​ Email as primary identifier 
•​ First name and last name fields 
•​ No username field 

14.3 Customer Dashboard 

Authenticated users access their dashboard at /accounts/dashboard/: 

•​ Order History: List of all purchases 
•​ Downloads: Access purchased files 
•​ Wishlist: Saved products 
•​ Profile: Account settings 

14.4 Admin User Creation 

Use the custom management command for verified admin accounts: 

docker compose exec web python manage.py createsuperuser_verified 
​

This creates the user AND verifies their email address automatically.  



15. Theming & Customization 

15.1 CSS Custom Properties 

Colors are controlled via CSS variables in static/css/base.css for self-hosted 
and also through the Site Settings page: 

:root { 
  --color-primary: #1e3a8a; 
  --color-secondary: #3b82f6; 
  --color-accent: #60a5fa; 
  } 

15.2 Tailwind CSS 4 

The frontend uses Tailwind CSS 4 with: 

•​ Utility-first styling 
•​ CSS variable integration 
•​ Responsive design utilities 
•​ Dark mode support 

15.3 Template Customization 

Templates are organized by app: 

•​ templates/: Global templates and includes 
•​ shop/templates/: Shop-specific templates 
•​ blog/templates/: Blog templates 
•​ pages/templates/: Page and section templates 
•​ account/templates/: Authentication templates 

15.4 Adminita Theme 

The admin interface uses Adminita: 



•​ Modern, clean design 
•​ Dark mode toggle 
•​ Better mobile responsiveness 
•​ Collapsible navigation 

https://adminita.todiane.com/  

16. Docker Deployment (self-hosted version) 

16.1 Container Architecture 

The default docker-compose.yml runs a single web container: 

•​ web: Django application with Gunicorn 
•​ Volumes: Persistent storage for database, media, logs 
•​ Port 8000: Exposed for reverse proxy 

16.2 Volume Mounts 

Critical distinction between baked-in and mounted content: 

•​ Baked-in (in container): Templates, static files, code 
•​ Mounted (persistent): Database, media uploads, logs 

Template changes require container rebuild. Data persists across 
deployments. 

16.3 Common Docker Commands 

# Start containers 
docker compose up -d 
 
# View logs 
docker compose logs -f web 
 
# Run management commands 
docker compose exec web python manage.py migrate 

https://adminita.todiane.com/


docker compose exec web python manage.py collectstatic 
 
# Rebuild after code changes 
docker compose build 
docker compose up -d 
 
# Stop containers 
docker compose down 

 

17. Maintenance & Updates 

17.1 Backup Strategy 

Essential backup commands: 

# Database backup (JSON) 
docker compose exec web python manage.py dumpdata > backup.json 
 
# Media files backup 
tar -czf media-backup.tar.gz data/media/ 
 
# Full data directory backup 
tar -czf ebuilder-backup.tar.gz data/ 

17.2 Restore Procedures 

# Restore database 
docker compose exec web python manage.py loaddata backup.json 
 
# Restore media 
tar -xzf media-backup.tar.gz 

17.3 Updates 

To update to the latest version: 



# Download 
Download from the dashboard area (you have up to 5 downloads). 
Backup your existing site before beginning 

 
# Rebuild container 
docker compose build 
 
# Apply migrations 
docker compose exec web python manage.py migrate 
 
# Collect static files 
docker compose exec web python manage.py collectstatic --no-input 
 
# Restart 
docker compose restart 

 



18. Security Considerations 

18.1 Built-in Security 

•​ CSRF Protection: All forms protected 
•​ SQL Injection: Django ORM prevents injection 
•​ XSS Prevention: Template auto-escaping 
•​ Secure Cookies: HTTPS-only session cookies 
•​ Password Hashing: PBKDF2 with SHA256 
•​ HoneyPot (to stop bots signing up) and Disposable Email signup 

protection 

18.2 File Download Security 

•​ Files served through authenticated views only 
•​ Direct URL access blocked 
•​ Download limits enforced per purchase 
•​ Files stored outside web root 

18.3 Stripe Security 

•​ Webhook signature verification 
•​ No card data touches your server 
•​ PaymentIntent API for proper flow 

18.4 Production Checklist 

•​ Set DEBUG=False 
•​ Use strong SECRET_KEY 
•​ Configure ALLOWED_HOSTS 
•​ Enable HTTPS via reverse proxy 
•​ Set up email for password resets 
•​ Configure Stripe webhook endpoint 



19. Troubleshooting 

19.1 Common Issues 

Port 8000 Already in Use 

Edit docker-compose.yml and change ports from "8000:8000" to "8001:8000" 
or another available port. 

Permission Errors on Media Files 

sudo chown -R 1000:1000 data/ 

Static Files Not Loading 

docker compose exec web python manage.py collectstatic --no-input 

Admin Styling Broken 

Verify Adminita is installed: 

docker compose exec web pip list | grep adminita 

Email Not Sending 

Check EMAIL_* settings in .env and verify SMTP credentials. 

19.2 Debugging 

•​ Check logs: docker compose logs -f web 
•​ Django shell: docker compose exec web python manage.py shell 
•​ Database: docker compose exec web python manage.py dbshell 
•​ Error logs: data/logs/django-error.log 

 



20. Roadmap & Future Development 

20.1 Current Version (v1.0) 

•​ Complete digital product shop 
•​ Blog and content management 
•​ Docker-first distribution 
•​ Stripe integration 
•​ Full SEO implementation 
•​ Multi-currency support 

20.2 Planned Features 

•​ Subscription products 
•​ Newsletter integration 
•​ Advanced analytics dashboard 
•​ Coupon/discount codes 
•​ Multiple payment gateways 

Credits & Acknowledgments 

eBuilder is built with these excellent open source projects: 

•​ Django: https://www.djangoproject.com/ 
•​ Tailwind CSS: https://tailwindcss.com/ 
•​ Stripe: https://stripe.com/ 
•​ Adminita: https://github.com/djangify/adminita 
•​ Alpine.js: https://alpinejs.dev/ 
•​ HTMX: https://htmx.org/ 
•​ TinyMCE: https://www.tiny.cloud/ 
•​ django-allauth: https://django-allauth.readthedocs.io/ 



 
Own your store. Own your data. Own your future. 
https://www.djangify.com  

Created by Diane Corriette | https://github.com/todiane 

https://www.djangify.com

	 
	 
	Table of Contents 
	1. Introduction & Overview 
	Philosophy 
	What the eCommerce Builder Is NOT 

	2. Target Audience 
	Primary Users 
	Technical Requirements 

	 
	3. Key Features 
	3.1 Complete Shop System 
	3.2 Stripe Integration 
	 
	3.3 Content Management 
	Blog System 
	Custom Pages (Page Builder) 
	InfoPages 

	 
	 
	3.4 SEO & Discovery 
	3.5 Design & User Interface 

	 
	4. Architecture & Tech Stack 
	4.1 Core Technologies 
	4.2 Application Architecture 
	4.3 Database Strategy 

	5. Project Structure 
	6. Installation & Deployment 
	6.1 Prerequisites 
	6.2 Quick Start Installation 
	6.3 Environment Configuration 
	6.4 SSL/HTTPS Setup 

	7. Configuration 
	7.1 Initial Site Setup 
	7.2 Shop Configuration 
	7.3 Homepage Configuration 

	8. Admin Interface Guide 
	8.1 Admin Structure 
	8.2 Key Admin Features 
	8.3 Content Block Management 
	9.1 Product Management 
	Product Fields 
	Product Downloads 

	9.2 Order Management 
	9.3 Cart System 
	9.4 Checkout Flow 

	10. Blog Module 
	10.1 Post Management 
	10.2 YouTube Integration 
	10.3 Blog Display 

	11. Pages Module (Page Builder) 
	11.1 Page Types 
	11.2 Content Blocks 
	Hero Section 
	Text Block (no image) 
	Two Column Block 
	Three-Column Block 
	Gallery Block 
	FAQ Block 

	11.3 Site Settings 

	12. InfoPages Module 
	12.1 Documentation Pages 
	12.2 Policy Pages 
	12.3 InfoPage Fields 

	13. SEO Features 
	13.1 Schema.org Structured Data 
	13.2 Per-Page SEO 
	13.3 Technical SEO 

	 
	14. Authentication System 
	14.1 django-allauth Integration 
	14.2 Custom User Model 
	14.3 Customer Dashboard 
	14.4 Admin User Creation 

	15. Theming & Customization 
	15.1 CSS Custom Properties 
	15.2 Tailwind CSS 4 
	15.3 Template Customization 
	15.4 Adminita Theme 

	16. Docker Deployment (self-hosted version) 
	16.1 Container Architecture 
	16.2 Volume Mounts 
	16.3 Common Docker Commands 

	17. Maintenance & Updates 
	17.1 Backup Strategy 
	17.2 Restore Procedures 
	17.3 Updates 

	18. Security Considerations 
	18.1 Built-in Security 
	18.2 File Download Security 
	18.3 Stripe Security 
	18.4 Production Checklist 

	19. Troubleshooting 
	19.1 Common Issues 
	Port 8000 Already in Use 
	Permission Errors on Media Files 
	Static Files Not Loading 
	Admin Styling Broken 
	Email Not Sending 

	19.2 Debugging 

	20. Roadmap & Future Development 
	20.1 Current Version (v1.0) 
	20.2 Planned Features 

	Credits & Acknowledgments 

